Research

Immunotherapies have demonstrated remarkable clinical success in the treatment of various cancers mainly by boosting the function of endogenous T cells to attack neoplastic cells. Unfortunately, the frequency of patients responding to these therapies is modest and a significant fraction of patients develop severe immune-related adverse events. These observations have catalyzed a more thorough investigation of other cell types in the tumor microenvironment that could be targeted to increase treatment efficacy while mitigating toxicity. B cells are an important arm of the adaptive immune system frequently infiltrating solid tumors, however, their function on cancer progression has not been sufficiently explored. The Bod laboratory focuses on deciphering the landscape of phenotypic and functional B cell states within tumors. In particular, we are interested in exploring which B cell subset is favorable or detrimental for cancer progression, and by which mechanisms these B cells control tumor growth. Our thorough examination of the B cell response towards cancer aims to provide a new angle to harness the anti-tumor immune response more effectively.


The main axes of research in our laboratory are:

Deciphering the landscape of B cell states 

within the tumor microenvironment using multi-omics technologies. Our goal is to establish an atlas of B cell states in cancer, and to thoroughly interpret the spatial, transcriptomic, and epigenetic status of B cells in different contexts (e.g., different tumor types, healthy tissues, post-treatment with immune checkpoint blockade therapy, chemotherapy, or radiotherapy).

Identifying B cell-specific biomarkers and/or -targets in cancer.

Using genetic and genomics approaches, we aim to explore potential B cell biomarkers and novel targets that are expressed on B cells, which may synergize with T cell-based checkpoint blockade therapy to enhance anti-tumor immunity.

Dissecting the underlying cellular and molecular mechanisms that govern the B cell response to cancer.

 The tumor microenvironment is layered with multiple tissular, cellular and molecular components which are associated with distinct tumor-promoting or -inhibiting mechanisms, and ultimately, open distinct therapeutic windows. We are interested in elucidating how B cells integrate these components and how the anti-tumor B cell response evolves in response to these signals.