within the tumor microenvironment using multi-omics technologies. Our goal is to establish an atlas of B cell states in cancer, and to thoroughly interpret the spatial, transcriptomic, and epigenetic status of B cells in different contexts (e.g., different tumor types, healthy tissues, post-treatment with immune checkpoint blockade therapy, chemotherapy, or radiotherapy).
Using genetic and genomics approaches, we aim to explore potential B cell biomarkers and novel targets that are expressed on B cells, which may synergize with T cell-based checkpoint blockade therapy to enhance anti-tumor immunity.
The tumor microenvironment is layered with multiple tissular, cellular and molecular components which are associated with distinct tumor-promoting or -inhibiting mechanisms, and ultimately, open distinct therapeutic windows. We are interested in elucidating how B cells integrate these components and how the anti-tumor B cell response evolves in response to these signals.